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Biocatalysis at acib involves the conversion and synthesis of known but also 
new and innovative molecules in order to replace conventional chemical proces-
ses with efficient and environmentally-friendly approaches. Beside single reacti-
on formats, acib researchers also focus on multi-step (one-pot) reactions, which 
allow to reduce the number of process steps and facilitate downstream proces-
sing.The complexity of multi-step (one-pot) reactions and whole cell biocatalysis 
require the integration of molecular techniques such as cell- and protein engi-
neering.

This enables us to replace common chemical processes by efficient and envi-
ronmental-friendly approaches. Beside single reaction formats that have been 
successfully implemented in industry, also multi-step reactions in one pot get 
more and more important! This reduces the number of working steps in a pro-
cess and requires less purification steps of intermediate products. Means: less 
CO2 emissions! But multi-step reactions can get very complex. 

To be successful, our researchers of biocatalysis need to work closely with our 
cell- and protein engineers. Our famous products of this research field are for 
example oligosaccharides for the food and cosmetic sectors, multi-oxidation re-
actions for aroma compounds and fine chemicals, or cascade reactions for buil-
ding blocks in antibiotic production.

Biocatalytic 
Synthesis

means that we convert 
  and produce 
  molecules with the 
help of enzymes.

If you prefer a 
visual presentation 

of biocatalysis, 
watch our video

S U P P O R T E D  B Y

https://youtu.be/UdoqjVRrkxE?si=QQGhEspdWX9_ZpIl
https://youtu.be/UdoqjVRrkxE?si=QQGhEspdWX9_ZpIl
https://youtu.be/UdoqjVRrkxE?si=QQGhEspdWX9_ZpIl
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Unspecific Peroxygenase (UPO)

UPO

H2O2 R1 R2

OH
R1 R2 *

R1 and R2 = alkyl, aryl
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Kinetic Resolution of Borneol AlkB-Catalyzed Hydroxylation
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Asymmetric Hydration of Olefins
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Biocatalytic Alkaloid Synthesis
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Chemo- & Regioselective Oxidation 
of Soft Nucleophiles

hFMO2 = human flavin-containing monooxygenase 2
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Methylation and De-Methylation
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TA = ω-transaminase

ADH = alcohol dehydrogenase; BVMO = Baeyer-Villiger monooxygenase; TA = ω-transaminase 
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Enantioselective α-Oxidation and Amination 
of Carboxylic Acids
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PAD = phenolic acid decarboxylase

ADH = alcohol dehydrogenase; TA = ω-transaminase

LOX = lactase oxidase; ADH = alcohol dehydrogenase; AADH = amino acid dehydrogenase
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Photobiocatalysis
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C=C Bond Cleavage
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S. Simić, M. Jaktaitļ, W. T. S. Huck, et al., Strategies for Transferring Photobiocatalysis to Continuous 
Flow Exemplified by Photodecarboxylation of Fatty Acids. ACS Catal. 12, 14040–14049 (2022).

C. K. Winkler, S. Simić, V. Jurkaš, et al., Accelerated Reaction Engineering of Photo(Bio)Catalytic 
Reactions through Parallelization with an Open-Source Photoreactor. ChemPhotoChem 5, 957–965 
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Light-Dependent Protochlorophyllide 
Oxidoreductase (LPOR)

L. Schmermund, S. Bierbaumer, V. K. Schein, et al., Extending the Library of Light-Dependent 
Protochlorophyllide Oxidoreductases and their Solvent Tolerance, Stability in Light and Cofactor 
Flexibility. ChemCatChem 12, 4044–4051 (2020).
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Reactions through Parallelization with an Open-Source Photoreactor. ChemPhotoChem 5, 957–965 
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Chromoselective Photochemical-Biocatalytic 
Cascade

L. Schmermund, S. Reischauer, S. Bierbaumer, et al., Chromoselective Photocatalysis Enables 
Stereocomplementary Biocatalytic Pathways. Angew. Chem. Int. Ed. 60, 6965–6969 (2021).

green light blue light

Photochemical-Biocatalytic Cyclic Deracemization

S. Bierbaumer, L. Schmermund, A. List, et al., Synthesis of Enantiopure Sulfoxides by Concurrent 
Photocatalytic Oxidation and Biocatalytic Reduction. Angew. Chem. Int. Ed. e202117103 (2022).

UPO = Unspecific Peroxygenase, ADH = Alcohol Dehydrogenase, CD = Carbon Nitride Photocatalyst

Msr = Methionine Sulfoxide Reductase, DTT = Dithiotreitol, PC = Photocatalyst
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Phosphorylase Technology: 
Direct & Indirect Glucosylation

Ascorbic Acid 2-Glucoside

Glucosylglycerol

Cello-oligosaccharides

C. Goedl, T. Sawangwan, P. Wildberger, et al., Sucrose phosphorylase: A powerful transglucosylation 
catalyst for synthesis of α-D-glucosides as industrial fine chemicals. Biocatal. Biotransformation 28, 
10–21 (2010).

C. Luley-Goedl, B. Nidetzky, Carbohydrate synthesis by disaccharide phosphorylases: Reactions, 
catalytic mechanisms and application in the glycosciences. Biotechnol. J. 5, 1324–1338 (2010).

T. Desmet, W. Soetaert, P. Bojarová, et al., Enzymatic glycosylation of small molecules: Challenging 
substrates require tailored catalysts. Chem. - A Eur. J. 18, 10786–10801 (2012).

C. Zhong, C. Luley-Goedl, B. Nidetzky, Product solubility control in cellooligosaccharide production by 
coupled cellobiose and cellodextrin phosphorylase. Biotechnol. Bioeng. 116, 2146–2155 (2019).

B. Nidetzky, C. Zhong, Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble 
cellooligosaccharides and property-tunable cellulosic materials. Biotechnol. Adv. 51, 107633 (2021).

C. Goedl, T. Sawangwan, M. Mueller, et al., A high-yielding biocatalytic process for the production of 2-O-
(α-D-glucopyranosyl)-sn-glycerol, a natural osmolyte and useful moisturizing ingredient. Angew. Chem. Int. 
Ed. 47, 10086–10089 (2008).

Patent W02017050920 (2017) 

R. K. Gudiminchi, B. Nidetzky, Walking a Fine Line with Sucrose Phosphorylase: Efficient Single-Step 
Biocatalytic Production of L-Ascorbic Acid 2-Glucoside from Sucrose. ChemBioChem 18, 1387–1390 
(2017).

CBP = cellobiose phosphorylase; CDP = cellodextrin phosphorylase
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Glycosyltransferase Technology

M. Pfeiffer, B. Nidetzky, C-Ribosylating Enzymes in the (Bio)Synthesis of C-Nucleosides and 
C-Glycosylated Natural Products. ACS Catalysis, 13, 15910-15938 (2023).

A. Gutmann, B. Nidetzky, Enzymatic C-glycosylation: Insights from the study of a complementary pair 
of plant O- and C-glucosyltransferases. Pure Appl. Chem. 85, 1865–1877 (2013). 

B. Nidetzky, A. Gutmann, C. Zhong, Leloir Glycosyltransferases as Biocatalysts for Chemical 
Production. ACS Catal. 8, 6286–6300 (2018).

H. Liu, G. Tegl, B. Nidetzky, Glycosyltransferase Co-Immobilization for Natural Product Glycosylation: 
Cascade Biosynthesis of the C-Glucoside Nothofagin with Efficient Reuse of Enzymes. Adv. Synth. 
Catal. 363, 2157 (2021).

Nothofagin

SuSy = sucrose synthase; CGT = C-glucosyltransferase 

Resveratrol 3,5-β-D-Glucoside

Dihydrochalcone Glucosides

A. Gutmann, L. Bungaruang, H. Weber, et al., Towards the synthesis of glycosylated dihydrochalcone 
natural products using glycosyltransferase-catalysed cascade reactions. Green Chem. 16, 4417–4425 
(2014).

A. Lepak, A. Gutmann, S. T. Kulmer, et al., Creating a Water-Soluble Resveratrol-Based Antioxidant by 
Site-Selective Enzymatic Glucosylation. ChemBioChem. 16, 1870–1874 (2015).

SuSy = sucrose synthase; GT = glycosyltransferase
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T. Li, A. J. E. Borg, L. Krammer, et al., Reaction intensification for biocatalytic production of 
polyphenolic natural product di-C-β-glucosides. Biotechnol. Bioeng. 120, 1506–1520 (2023).

M. Pfeiffer, A. Ribar, B. Nidetzky, A selective and atom-economic rearrangement of uridine by cascade 
biocatalysis for production of pseudouridine. Nat. Commun. 14, 2261 (2023).

Di-C-Glucosides

C-Nucleoside

3’- and 6’-sialyl-HMOs

K. Schmölzer, T. Czabany, C. Luley-Goedl, et al., Complete switch from α-2,3- to α-2,6-regioselectivity 
in Pasteurella dagmatis β-D-galactoside sialyltransferase by active-site redesign. Chem. Commun. 51, 
3083–3086 (2015).

S. Schelch, M. Eibinger, J. Zuson, et al., Modular bioengineering of whole-cell catalysis for sialo-
oligosaccharide production: coordinated co-expression of CMP-sialic acid synthetase and 
sialyltransferase. Microb. Cell Fact. 22, 241 (2023).
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Activated-Sugar Technology
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Kinase & Transferase

Phosphatase & Transferase
GDP-Mannose

Synthase 
UDP-Glucose

Phosphorylase & Phosphatase
Sugar1-Phosphates

Examples synthesized: GDP-L-fucose, GDP-mannose, UDP-glucose, UDP-galactose, UDP-glucuronic 
acid, various rare sugar nucleotides K. Schmölzer, M. Lemmerer, A. Gutmann, B. Nidetzky, Integrated process design for biocatalytic 

synthesis by a Leloir glycosyltransferase: UDP-glucose production with sucrose synthase. Biotechnol. 
Bioeng. 114, 924–928 (2017).

P. Wildberger, M. Pfeiffer, L. Brecker, et al., Diastereoselective synthesis of glycosyl phosphates by 
using a phosphorylase-phosphatase combination catalyst. Angew. Chem. Int. Ed. 54, 15867–15871 
(2015).

M. Pfeiffer, D. Bulfon, H. Weber, et al., A kinase-independent one-pot multienzyme cascade for an 
expedient synthesis of guanosine 5′-diphospho-D-mannose. Adv. Synth. Catal. 358, 3809–3816 (2016).
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SuSy = sucrose synthase

HK = hexokinase, PK = pyruvate kinase; PPK = polyphosphate kinase; AK = acetate kinase;
ManC = mannose-1-phosphate guanylyltransferase; PPase = pyrophosphatase



G. Steinkellner, C. C. Gruber, T. Pavkov-Keller, et al., Identification of promiscuous ene-reductase 
activity by mining structural databases using active site constellations. Nat. Commun. 5, 4150 (2014).

Traditional screening for novel enzymes requires time-consuming experiments and expensive 
activity assays in the wet-lab. To reduce costs, the prediction and identification of enzyme 
functionalities is a major challenge of modern bioinformatics. However, the computational an-
notation of proteins proves to be difficult erroneous and lacks the possibility to identify comple-
tely independent novel biocatalysts because they rely on the correlation of (sequence) 
similarities with the known functions of the template and are bound to find „more of the same“.

C ATA L O P H O R E  S E A R C H  F O R  N O V E L  E N Z Y M E S

acib-researchers developed a patented bioinformatics method to mine structural data-
bases using three dimensional search templates which cover the arrangement of chemical 
functional groups or pre-calculated point-clouds representing the „empty space“ of active 
sites. These search templates are termed „catalophores“ (i.e. carrier of the catalytic function). 
The searches are independent of structural or sequence similarities to currently employed 
enzymes. Therefore, these identified enzymes may feature different physico-chemical proper-
ties such as stability selectivity or substrate tolerance.
A successful test-case led to the identification of two „novel“ ene-reductases, by searching 
with patterns obtained from classical old yellow enzymes. The identified enzymes showed 
significant conversions on typical old yellow enzyme substrates and even allowed access to 
enantiomers that could not be obtained using current enzyme portfolio although the overall 
sequence and structural similarity are below 10 %.

In-silico Search 
for Novel Biocatalysts

A. Sigg, M. Klimacek, B. Nidetzky, Pushing the boundaries of phosphorylase cascade reaction for 
cellobiose production I: Kinetic model development. Biotechnol. Bioeng. 121, 580–592 (2024).

A. Sigg, M. Klimacek, B. Nidetzky, Pushing the boundaries of phosphorylase cascade reaction for 
cellobiose production II: Model-based multiobjective optimization. Biotechnol. Bioeng. 121, 566–579 
(2024).

S. Schelch, M. Eibinger, S. Gross Belduma, et al., Engineering analysis of multienzyme cascade 
reactions for 3'-sialyllactose synthesis. Biotechnol. Bioeng. 118, 4290–4304 (2021).

To harness the full potential of biotransformations, it is essential to explore the true process 
boundaries and define the optimal window of operation. Kinetic modeling is a powerful engi-
neering tool in enzyme-based process development, especially in cascade reaction optimiza-
tion. By using kinetic models, you can adopt a systematic, knowledge-based approach to op-
timization. These models help unravel the complex network of interconnected factors of 
cascade process efficiency.

W E  O F F E R  A D V A N C E D  M O D E L - B A S E D  R E A C T I O N  O P T I M I Z AT I O N 
( M E C H A N I S T I C - K I N E T I C  M O D E L S ,  H Y B R I D  M O D E L S ) 
T O  U N L O C K  T H E  F U L L  P O T E N T I A L  O F  B I O T R A N S F O R M AT I O N S

However, applying mechanistic-kinetic models can be challenging, especially under the actual 
conditions of biocatalytic synthesis. For instance, high substrate concentrations in synthetic 
processes can introduce specific and nonspecific effects, complicating the model extension.

To address these challenges, we offer an innovative approach through hybrid modeling. Hybrid 
models combine mechanistic-kinetic models with empirical descriptions of real process condi-
tions. This approach bridges the gap between mechanistic research and practical application 
in technologically relevant conditions, providing significant benefits for biocatalytic process de-
velopment. The modeling approach comprises parameterization, simulation, and optimization. 
Interfaces with data-driven process analysis methods extend the power of the model-based 
optimization procedure.

Discover the advantages of kinetic and hybrid modeling with us to elevate your biotransforma-
tions to the next level!
with a convolution of specific and nonspecific effects. We offer an approach by hybrid mode-
ling where hybrid models expand the mechanistic-kinetic model by an empirical description of 
the effect of the real process conditions. Hybrid models can close the gap between mechani-
stic research and applicability in technologically relevant reaction conditions, such realizing im-
portant benefits for biocatalytic process development.
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